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ABSTRACT 

This thesis explores the numerical methods and software development for 

optimal trajectories of a specific model of Helicopter Unmanned Aerial Vehicle 

(UAV) in an obstacle-rich environment.  This particular model is adopted from the 

UAV Laboratory of the National University of Singapore who built and simulated 

flights for an X-Cell 60 small-scale UAV Helicopter.  The code, which allowed the 

team to simulate flights, is a complex system of non-linear differential 

equations—15 state variables and four control variables—used to maneuver the 

state trajectories.  This non-linear model is incorporated into a separate 

optimization algorithm code, which allows the user to set initial and final time 

conditions together with various constraints, and, using the same variable 

scheme, optimize a trajectory.  The optimal trajectory is defined by using a cost 

function—the performance measure—and the system is subject to a set of 

constraints (such as mechanical limitations and physical three-dimensional 

obstacles).  Simulations conclude that solutions are readily obtained; however, it 

is still very difficult to derive trajectories that are truly optimal, and our work calls 

for more future research in computational programs for optimal trajectory 

planning.  All simulations in this thesis are modeled using the MATLAB program.    

.    
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I. LITERATURE REVIEW 

A. BACKGROUND 

This project explores and simulates a specific algorithm for trajectory 

optimization for UAVs in an environment with fixed or unfixed obstacles that may 

be hard or soft in nature.  A hard obstacle represents a physical obstruction 

where contact will result in damage to the system and mission failure.  A soft 

obstacle represents something that should be avoided, but the algorithm user 

can designate a priority or weighting to the obstacle to portray its level of 

detriment to the UAV.  Since both path and trajectory planning are popular topics 

of research among the science community—with a plethora of applications—it is 

important to conduct a literature review, both to gather ideas that may be helpful 

to research and simulation, and to ensure that our algorithm is unique in nature.   

 There are two types of relevant problems in the reviewed literature:  path 

planning and trajectory planning and optimization.  Path planning is the least 

complex of the two, but may provide some simple ideas that can still be applied 

to more complex problems.  Trajectory planning and trajectory optimization are 

very similar as far as variables and parameters are concerned.  The main 

difference is that trajectory optimization is focused on maximizing or minimizing a 

specific cost function (i.e., travel time, cost, fuel consumption).  This chapter 

provides a brief description of pertinent articles researched in each of the two 

categories. 

B. ARTICLE REVIEWS 

Path planning is the simplest form of planning, since it generally involves 

directional components of a vehicle or aircraft, which means that the model will 

consist of two space variables for 2-D and three space variables for 3-D.  

Occasionally, an analysis of path planning will include velocities which would 

increase the number of variables to four and six, respectively. The best path is 

created by optimizing these variables over a set of constraints.  
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In [1], a team analyzes a problem slightly more difficult than standard path 

planning, as it describes a method for finding the shortest path for multiple UAVs 

flying simultaneously, rather than just one aircraft.  This team uses Dubins paths, 

which calculate a sum of circular arcs and their tangent lines, to determine the 

best paths for a swarm of UAVs to simultaneously converge on a target region.  

The model uses three general constraints:  (1) A maximum bound on the UAV 

curvature (due to limitations of the aircraft), (2) Minimum separation distance 

between UAVs, and (3) Non-intersection of paths at equal length (to prevent 

collision).  The model intends to protect the aircraft while minimizing distance 

travelled, which inherently achieves the goals of minimizing fuel consumption 

while increasing durability of the UAVs [1].   

Each UAV path is generated through finding a common plane between the 

initial and final position vectors and the final tangent vector (i.e., for each path, 

the three vectors are co-planar).  Then, each path length is calculated using the a 

specific set of equations.  Each path is compared to a “Reference Path” which is 

the longest of all possible UAV paths.  Each path is then lengthened (by reducing 

curvature) and compared against all existing constraints until an optimal solution 

is obtained.  Since no aircraft specifications pertain to this simple model, it may 

be used for fixed or rotary winged aircraft [1]. 

The aspects of this article are helpful, since they provide a method for 

coordinating several UAVs for simultaneous arrival on a designated target; 

however, they avoid several critical aspects that are better addressed in 

trajectory planning and optimization.  First, this model assumes an equal path 

length and a constant speed for all UAVs.  Second, the analysis assumes an 

obstacle-free environment.   Finally, the equations used for this path planning 

method do not optimize any critical performance functions that, in turn, do not 

allow any maximization/minimization planning effects [1]. 
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Models of trajectory planning and/or optimization become more 

complicated since they incorporate dynamics involving measures of performance 

of the actual vehicle or aircraft, as well as directional variables.  While 

parameters and constraints still exist in the model, the number of variables and 

dimension of the differential equation system will increase substantially.  In this 

case, the nonlinearity in the dynamics becomes the main challenge in the 

searching for optimal solutions.  

In [2], the authors study a time-variant model by analyzing the probability 

of a UAV becoming disabled at a certain time juncture in a dynamic environment.  

In other words, the probability of a UAV becoming disabled varies over the time 

variable.  This particular model requires that the UAV reach the objective 

(accomplishing the mission) while utilizing the shortest path possible or finding 

the trajectory that minimizes the probability of the UAV being disabled.  

Weighting of parameters by the user determines which criterion is most important 

to the model.  The probabilistic map changes constantly over time; therefore, the 

paths generated by this strategy incorporates functions of both position and time.  

Consequently, variables will exist for velocity and acceleration, not just for the 

position vector (as is the case in path planning).  That means that this model 

must also incorporate several constraints for UAV capabilities.  As a UAV flies in 

an area with multiple threats, the risk of the UAV becoming disabled is 

characterized by the probability of the UAV becoming disabled at a certain 

location and time.  The probability is modeled using Gaussian Probability Density 

Functions [2].  

This probabilistic approach provides a much more useful method for UAV 

planning, using trajectory planning rather than path planning.  This allows the 

modeler to emplace constraints based on the capabilities of the UAV and 

capabilities of the threat as well as path direction.  The model also allows all 

variables to change over time which means that obstacles can be fixed, moving,  
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and/or with changing capabilities based on both time and position.  These 

aspects of this model are very useful for the prospect of real-time trajectory 

planning [2].     

In [3], CDR Mike Hurni analyzes optimal control techniques for vehicle 

trajectories specifically pertaining to minimizing the cost function for ground 

vehicle operations.  His dissertation shows, very methodically, how optimal 

control techniques can work effectively to minimize cost (or another user selected 

performance measure) while maximizing the flexibility for a ground vehicle to 

alter its path in a real-time fashion in response to obstacles known or not known 

a priori.  In other words, his techniques can minimize cost while maximizing 

robustness.  His techniques also provide a great deal of flexibility in allowing the 

user to alter weighting values to increase, decrease, or eliminate the impact of 

certain aspects of the trajectory on the overall cost function value [3].   

 Additionally, CDR Hurni’s work provides a series of “requirements 

checks” on a particularly selected trajectory to test feasibility, obstacle 

collision/buffer violation, caution zone infractions, and several other constraints 

that may deem the trajectory to cause mission failure.  These checks are 

established in a way to allow the user to vary buffer zones, the number of 

obstacles, the state of obstacles—fixed or unfixed—and other key criteria that 

are critical to the flexibility of this particular optimal control system [3]. 

 In the final stages of the dissertation, CDR Hurni addresses the prospect 

of multiple ground vehicles operating in the same space simultaneously.  His 

algorithm allows the user to implement weights involving collision and grazing 

prevention for a varying number of vehicles.  These weights are in addition to the 

previously calculated weights for obstacle avoidance.  This addition allows an 

even broader range of use for the algorithm.  CDR Hurni’s use of optimal control 

methods has resulted in an extremely flexible algorithm that allows a user to 

input and alter numbers and weightings for obstacle and ground vehicle criteria 

and constraints while optimizing trajectory to minimize or maximize a function  
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selected by the user.  The only disadvantage to this project, as it pertains to our 

work, is that our problem deals with a nonlinear system and much more complex 

dynamics [3].       

In [4], a team documents their construction of a vehicle to compete in the 

DARPA Urban Challenge by formulating and solving an optimal and real-time 

trajectory planning problem with velocity variables and nonlinear dynamics.  In 

forming their optimal trajectory formula, the team integrates boundary conditions 

at the initial and final time instances, motion constraints, and collision avoidance 

criteria as the three conditions that must be satisfied to enable a feasible 

trajectory.  The fourth constraint is the minimization of the “performance index” 

(optimization).  These constraints are designed with the assumption that 

boundary conditions and motion constraints are generally given while 

optimization and collision avoidance criteria are chosen to fit the designer’s 

needs for a specific situation [4].  

 The key development for this trajectory planning problem is the idea of 

real-time obstacle avoidance.  This means that it is assumed that obstacles may 

be fixed or moving and that the positions of these obstacles are generally not 

known a priori which means that trajectories must be re-planned multiple times 

throughout movement between the initial and final positions.  Three key features 

enable this method to satisfy the requirement: (1) All paths satisfying boundary 

conditions and the vehicle’s kinematic constraints are parameterized in terms of 

polynomials of sufficient order, (2) A collision-free criterion is developed and 

imposed for avoiding both “hard” and “soft” obstacles that are detected along the 

path (in real time), and (3) A performance index is introduced to find the best 

path among the collision-free paths meeting all necessary criteria [4].  Finally, the 

performance index is chosen so that paths equivalent to the shortest path can be 

solved analytically while meeting all criteria—based on both given constraints 

and those imposed by the designer.  The bottom line is that, for a successfully 

optimal trajectory that completes the mission in a real-time changing dynamic 

environment, the trajectory must be modeled in a piecewise fashion as the 



 6

vehicle moves from its initial to final position.  The team’s conclusion is that this is 

most effectively accomplished through use of a parameterized fourth-order 

polynomial.  By obtaining the solution to an adjustable parameter, it is possible to 

generate a real-time solution [4].    

 The method discussed in this article provides the same advantages as 

were discussed in CDR Hurni’s dissertation with the exception of not including a 

model with multiple vehicles to be coordinately controlled.  Also, the solution for 

this model was derived analytically, and our complex nonlinear model will most 

certainly require a numerical model to ensure solvability. 

C. CONCLUSION 

 The professional works uncovered during the literature review phase of 

this thesis have shown that trajectory optimization is a complex problem which 

complicates drastically when non-linear dynamics and constraints are involved.  

The papers reviewed demonstrate several methods for analyzing and solving 

path and trajectory planning problems.  They all have strengths and weaknesses 

that are pertinent to our future research.  The key point is that none of them truly 

solve our exact situation that requires optimality of the performance measure, so 

we will surely incorporate some of the ideas from these works.  Significant 

original input will also be required to fulfill our objective:  to derive and test an 

algorithm to numerically solve an optimal trajectory for a UAV in a dynamic 

environment with and without obstacles.    
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II. PROBLEM FORMULATION 

A. INTRODUCTION 

At the end of Chapter I, it is clearly stated that the objective is to produce 

an optimal UAV trajectory in a dynamic environment with fixed and/or moving 

obstacles.  This objective requires the derivation of a system of equations and 

functions that consider three separate elements:  1) The dynamic equations that 

determine the trajectory of the UAV, 2) The trajectory constraints, and 3) The 

performance measure for optimization.  The dynamic equations involve a system 

of both state and control vectors.  The state vectors are represented by the 

positions, attitudes, and velocities of the UAV—all with respect to time.  The 

control vectors are determined by the system inputs controlled by the algorithm’s 

user.  Trajectory constraints, in this case, alter the trajectory to avoid all 

obstacles in a projected path.  The optimizing performance measure outlines a 

function to minimize cost, time, or another parameter of our choosing by solving 

for the optimal control vector in a given trajectory.  The remainder of this section 

will use the three elements explained above to develop a logical and solvable 

problem that allows us to fulfill the stated objective. 

B. TRAJECTORY EQUATIONS 

   The trajectory equations for this particular system will be structured in the 

form of a comprehensive non-linear differential equation model based on a 

Helicopter UAV built and modeled by a research team from the National 

University of Singapore.  The model will consist of four key components that will 

derive a total of 15 state variables and, consequently, 15 differential equations:  

1) Kinematics, 2) Six degree-of-freedom (DOF) rigid-body dynamics, 3) Main 

rotor flapping dynamics, and 4) Yaw rate gyro dynamics [5].  Prior to introducing 

the non-linear system, Table 1 defines the 15 state variables and four  
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control variables.  First, it is important to realize that the UAV will operate in two 

different sets of coordinate frames:  Body Frame (used for velocities and based 

on coordinates with reference to the actual vehicle) and North-East-Down Frame 

(used for positions and based on an initially fixed set of coordinates [North = x, 

East = y, Down = z]) [5]. 

Table 1.   Dynamic Equation Variable Definitions 

    

1.   Kinematics 

  The kinematics component generates six of the 15 state variable 

differential equations for our system.  The six equations are derived from two 

vector equation systems, each with three equations, based on position and 

velocity (in the x, y, and z directions).  The first equation set is for position: 

n B bP B V= ⋅    

where 

( , , )T
n x y zP p p p=  

Variable Variable Definition Unit 

, ,x y zp p p  Position Vector along the North-East-Down (NED) Frame (x,y,z) meters 
, ,u v w  Velocity Vector along the Body Frame (x,y,z) meters/sec. 

, ,θΦ Ψ  Roll, Pitch, and Yaw Angles (Euler Angle in the NED Frame) radians 
, ,q r s  Roll, Pitch, and Yaw Angular Rates in the Body Frame radians/sec.

,s sa b  Longitudinal and Lateral Tip-Path-Plane (TPP) Flapping Angles radians  

,intpedδ  Intermediate State in Yaw Rate Gyro Dynamics N/A 

latδ  Allows the user to control the ailerons of the Helicopter UAV N/A 

lonδ  Allows the user to control the elevators of the Helicopter UAV N/A 

colδ  Allows the user to control the collective pitch of the Helicopter UAV N/A 

pedδ  Allows the user to control the rudder of the Helicopter UAV N/A 
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is the position vector in the NED Frame and 

( , , )T
bV u v w=  

is the velocity vector in the Body Frame.  Since the position and velocity vectors 

are defined in different coordinate spaces, it is imperative to have a 

transformation matrix between the two.  This transformation matrix, designated 

BB , is defined below [5]. 

  
cos( ) cos( ) sin( )sin( ) cos( ) cos( )sin( ) cos( )sin( ) cos( ) sin( )sin( )
cos( )sin( ) sin( )sin( ) cos( ) cos( ) cos( ) cos( )sin( )sin( ) sin( ) cos( )

sin( ) sin( ) cos( ) cos( ) cos( )
BB

θ θ θ
θ θ θ

θ θ θ

Ψ Φ Ψ − Φ Ψ Φ Ψ + Φ Ψ⎛ ⎞
⎜ ⎟= Ψ Φ Ψ + Φ Ψ Φ Ψ − Φ Ψ⎜ ⎟
⎜ ⎟− Φ Φ⎝ ⎠

   

 
The second kinematic equation set is for rotational motion: 
 

n B bSΩ = ⋅Ω   
where 

( , , )T
n θΩ = Φ Ψ  

is the Euler Angle Vector in the NED Frame and 

( , , )T
b q r sΩ =  

is the angular velocity vector in the Body Frame.  Just as is the case with the first 

equation set, the different coordinate spaces require a corresponding 

transformation matrix, designated SB and defined below. 

 

                                  
1 tan( )sin( ) tan( ) cos( )
0 cos( ) sin( )

sin( ) cos( )0
cos( ) cos( )

BS
θ θ

θ θ

⎛ ⎞
⎜ ⎟Φ Φ⎜ ⎟

= Φ − Φ⎜ ⎟
⎜ ⎟Φ Φ⎜ ⎟⎜ ⎟
⎝ ⎠

  

 

2. Rigid-Body Dynamics 

The six degrees of freedom of the rigid body dynamics of the helicopter 

generate two additional systems of equations, with each system containing three  
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equations.  These six equations derive the six components of the helicopter’s 

velocity (three in space and three angular) and are represented by the following 

Newton-Euler Equations: 

( ) gb
b b b

FFV V
m m

= −Ω × + +   

and 

1[ ( )]b b b bI M I−Ω = − Ω × Ωi   

where 

( )sin , sin cos , cos cos T
gF mg mg mgθ θ θ= Φ Φ  

is the gravity force vector, 

( )

( )

( )

mr fusbx

b by mr fus tr vf

bz mr fus hf

X XF
F F Y Y Y Y

F Z Z Z

⎡ ⎤+⎡ ⎤
⎢ ⎥⎢ ⎥= = + + +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

 

is the aerodynamic force vector, 

( )

( )

( )

mr vf trbx

b by mr hf

bz mr vf tr

L L LM
M M M M

M N N N

⎡ ⎤+ +⎡ ⎤
⎢ ⎥⎢ ⎥= = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

 

is the moment vector, and 

0 0
0 0
0 0

xx

yy

zz

I
I I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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is the moment of inertia matrix.  The term m represents the total mass of the 

helicopter UAV, and g  represents a constant value for gravity.  The subscripts 

mr, tr, fus, vf, and hf represent main rotor, tail rotor, fuselage, vertical fin, and 

horizontal fin or the helicopter, respectively.  The X, Y, Z, L, M, and N terms are 

all equations based on combinations of different coefficients and variables.  

Expanded detail of all terms can be found in [5]. 

3. Main Rotor Flapping Dynamics 

These two state variables, sa  and sb , represent the longitudinal and 

lateral Tip Path Plane angles as the main rotor spins during flight.  The dynamics 

of these two variables are represented by the following equations: 

1 lons s s
s lon

Aa a aa r u w
u w

δδ δ δ
τ τ δ δ τ

⎛ ⎞= − − + + +⎜ ⎟
⎝ ⎠   

and 

1 lats s
s lat

Bb bb q v
v

δδ δ
τ τ δ τ

= − − − +   

where τ  represents the effective rotor time constant of the main rotor system, 

sa
u

δ
δ  and  

sb
v

δ
δ  are the longitudinal and lateral dihedral effect derivatives, 

sa
w

δ
δ  

is the flap-back effect derivative, lon
Aδ is the effective linkage gain from the 

control variable lonδ  to the cyclic pitch angle along the longitudinal direction, 

and lat
Bδ is the effective linkage gain from the control variable latδ to the cyclic 

pitch angle along the longitudinal direction [5].  Control variables are defined and 

explained in Section C.  Expanded detail of these terms can be found in [5]. 
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4. Yaw Rate Gyro Dynamics 

For small-scale remote controlled helicopters, the yaw moment is very 

sensitive; therefore, it is very difficult to control yaw motion in manual flight.  To 

combat this challenge, small-scale helicopters are commonly equipped with a 

yaw rate gyro, which consists of a gyro sensor and an embedded controller, to 

allow the human controller to modify the yaw rate and/or heading.  In modern 

models, such a device is not essential to fly a programmed path; however, it is 

reserved for the manual back-up flight system.  Therefore, the yaw rate gyro’s 

dynamics must be included in the non-linear flight model and are represented by 

the following differential equation: 

,intped a pedK sδ δ= −  

where aK  represents a scaling value (a constant of value 3.73), and pedδ  

represents the control variable for rudder servo input (defined and explained in 

Section C) [5].   

 The 15 variables described in the four preceding subsections are the 

system whose solutions, based on the variation of the four control variables, 

were used by the team in the non-linear model to code simulated flight paths for 

the X-Cell 60 small-scale UAV helicopter.  This same non-linear model is the 

critical input piece into the code that will eventually create a numerical program to 

optimize the trajectory of the same UAV helicopter.  

C. CONTROLS 

In order to achieve solutions to the 15 state variable differential equations, 

it is essential to impose a set of controls that will directly impact the flight of the 

helicopter and, therefore, will generate state variable solutions throughout an 

interval of time.  These controls, which are non-dimensional, have been scaled in  
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this particular model to have values between -1 and 1.  There are four total 

control variables, and they are annotated, along with their impact on the 

helicopter’s flight, in the following subsections [5]. 

1. Aileron Servo Input ( )latδ  

 This control variable allows the user to control the ailerons of the 

helicopter.  This particular input will directly influence the state of roll for the 

aircraft (p and Φ  as far as the state variables are concerned) [5]. 

2. Elevator Servo Input ( )lonδ  

 This control variable allows the user to control the elevators of the 

helicopter.  This particular input will directly influence the state of pitch for the 

aircraft (q and θ  as far as the state variables are concerned) [5]. 

3. Rudder Servo Input ( )pedδ  

 This control variable allows the user to control the rudder of the 

helicopter.  This particular input will directly influence the state of yaw for the 

aircraft (r and Ψ  as far as the state variables are concerned) [5]. 

4. Collective Pitch Servo Input ( )colδ  

 The collective pitch control is the most unique of the four.  While it has the 

same range of input values, it is not an independent control.  This means that it 

may not be altered without changing at least one of the other control variables to 

balance it.  Changing only the collective pitch will cause the aircraft to become 

unstable and possibly crash.  Obviously, this provides disastrous results for 

trajectory simulations [5].    
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The user programmed inputs of the aforementioned four control variables, 

forced to conform to pre-determined constraints, will allow a property designed 

non-linear model to create solutions to the state variable differential equation 

system. 

D.  CONSTRAINT EQUATIONS 

   The development of obstacle constraints involves limitations to the 

trajectory of the vehicle that do not involve maximum and minimum restrictions 

from the system state or control inputs.  This section will focus on obstacle 

avoidance. 

   The main focus of this particular UAV Trajectory Model is for use in an 

urban environment, so it is important to consider typical obstacles one might 

encounter while travelling aerially in a city.  There are three obstacle types:  

buildings, power lines (with poles), and bridges.  Ideally, a model that can handle 

all three types is optimal.  It is important to note that the model cannot produce 

obstacles with rigid corners, as this can result in non-differentiable functions as 

we attempt to solve the system.  The obstacle modeling in this section uses the 

p-norm to create a variation on the standard 3-D equation for an ellipsoid-shaped 

region.  The equation h(x,y,z) shows the general form used to model the 

obstacles. 

 

( ) ( ) ( )
( ( ), ( ), ( )) 1 0

p p px t x y t y z t z
h x t y t z t

a b c
ϕ ϕ ϕ− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

• x(t), y(t), z(t) represent the position (x,y,z) with respect to time 

• xϕ , yϕ , zϕ represent the center position locations inside of each obstacle 

• a represents the distance from the center to the obstacle boundary in   

the x-direction 

• b represents the distance from the center to the obstacle boundary in 

the y-direction 
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• c represents the distance from the center to the obstacle boundary in 

the z-direction [3]. 

 

   The absolute value signs can be removed from the equation if the p-

values are limited to even numbers.  This is suitable, since increasing the value 

of p will merely alter the shape of the obstacle from more circular/elliptical to 

more square/rectangular [3].  Therefore, the equation below, where p>0 and 

even, will be used for all subsequent examples which will model several 

obstacles types using MATLAB.   

 

( ) ( ) ( )
( ( ), ( ), ( )) 1 0

p p px t x y t y z t z
h x t y t z t

a b c
ϕ ϕ ϕ− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

   This model assumes that the ground is flat and represents the xy-plane 

which means that the z-axis is vertical and z ≥ 0 in all instances.   
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Example 1 
 

20 20 202 1 0
4 4 2
x y z −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 

Figure 1.   A short, block building with center point (0,0,2) and a=4, b=4, c=2, 
p=20 
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Example 2 
 

40 40 4015 1 0
4 6 15
x y z −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 

Figure 2.   A skyscraper type of building with center point (0,0,15) and a=4, 
b=6, c=15, p=40 

 
Example 3 

 

Left Pillar:  

20 20 2029 10 1 0
2 2 20

x y z− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Right Pillar:  

20 20 2029 10 1 0
2 2 20

x y z+ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Bridge Portion:  

20 20 205 1 0
30 2 2
x y z −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Figure 3.   A flat bridge with two end pillars (plot is constructed using three 
separate functions; one for each pillar and one for the bridge portion) 

 
Example 4 

 

Left Pillar:  

20 20 2029 35 1 0
2 2 5

x y z− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Right Pillar:  

20 20 2029 35 1 0
2 2 5

x y z+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Bridge Portion:  

20 20 2030 1 0
30 2 2
x y z +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Suspension Supports:  

 

 

2020 20 2( 15)15 1 0
15 2 20

z xx y ⎛ + + ⎞+⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   for x<0 

 
2020 20 2( 15)15 1 0

15 2 20
z xx y ⎛ + + ⎞+⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
   for x>0 

 

Suspension Cables:      

2 2 20(30 ) 1 0
.5 2

x d y z c
c

± ± −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Note:  For the Suspension Cable Equation, a value of c must be selected so that 

the z coordinate for the to of the suspension cable matches the z coordinate for 

the suspension support for each selected value of x±d. 

 

 

Figure 4.   A suspension bridge with two end pillars below the road level, two 
triangular suspension supports above the road level, and a number of 

cables (number and positions along the x-axis can be altered easily by the 
designer within the equation) 
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   Examples 1 through 4 demonstrate legitimate urban obstacle possibilities 

with constants that the designer can easily alter to change the size, shape, and 

position of the particular obstacles.  Although the implicit equation used is 

exponential in nature, most of the outcomes are fairly linear in nature; another 

challenge arises when we concern obstacles with curvature—i.e., power lines.  

This requires the orientation of the previous model in the direction of a Catenary.  

To form the suspension supports in Example 4, a variant of the third term, using 

a linear x-term in addition to the z-term, provides the necessary result.  Example 

5 demonstrates an example of a power line obstacle, but, contrary to Example 4, 

the x-term added to the third term is non-linear in nature, which inherently results 

in curvature.    

 

Example 5 
 

Left Pole:  

2 2 2029 2 1 0
2 2 15

x y z− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Right Pole:  

2 2 2029 2 1 0
2 2 15

x y z+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Power Lines:  ( )
2

10
10 1 1 0

30 20

cxx y z
c

⎛ ⎞⎛ ⎞ ⎜ ⎟+ + − − − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
   for [ ]0.5,2c∈  

Note:  The larger the value of c, the more increased the curvature in the shape 

becomes.  At values of c>2, the plot in MATLAB begins to disintegrate.  Values of 

c>2 should be unnecessary for the purpose of designing obstacle for this project.  

For the plot below, c = 1.6. 
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Figure 5.   A set of power lines with two poles and a buffer area simulating the 
curved area created by hanging lines  

Examples 1 through 5 have demonstrated some different equations for 

modeling certain types of common urban obstacles into the constraint function.   

E. THE PERFORMANCE MEASURE 

Thus far, we have discussed the development of a non-linear state 

variable equation system, using control variables and constraints, for a Helicopter 

UAV model that allows a user to simulate flights and plot the trajectories.  A user 

may alter these trajectories through changing the control variables in the 

computer model.  Finally, an optimization function will incorporate the non-linear 

simulation model, and all of its conditions, into an integral (evaluated over time) 

that will allow the user to minimize a particular aspect of the UAV’s operation— 

called a cost.   

In order to complete the problem formulation process for optimal control, it 

is critical to identify clearly the performance measures of the system one wishes 

to optimize.  A different designer may choose different performance measures, 

but for this project, we will use time and cost.  An optimization function is one that 

will either minimize or maximize the chosen performance measures—in this 
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case, both time and cost will be minimized.  The optimization functions 

developed in this section will combine the states, controls, and constraints into 

one equation that eventually provides our desired optimization endstate.   

The problem in this model finds a solution for the optimal control vector 

(u*) which causes the system 

( ) ( ( ), ( ), )d x t f x t u t t
dt

=  

 

 

 

to follow an allowable trajectory (x*) which minimizes the performance measure 

(J) such that 

0

( ( ), ) ( ( ), ( ), )
ft

f f
t

J h x t t f x t u t t dt= + ∫  

where the function ( ( ), )f fh x t t  represents an endpoint cost not associated with 

the trajectory itself [6].  

In this case, the allowable trajectory x* that minimizes the performance 

measure J is called the optimal trajectory [6].  Two things must be realized prior 

to modeling optimal control problems.  First, an optimal control solution may not 

be unique.  This is not necessarily detrimental; although it may complicate the 

computational aspect of calculation, it can allow flexibility for the designer’s 

configuration scheme.  Second, an optimal control may not exist—this is 

detrimental to our desired results   

In order for the constraint algorithm to perform properly, four critical input 

components are coded to formulate a solution: 
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• The Cost Function:  Defines and codes the integral for the actual cost 

optimization function 

• The Dynamics Function:  Takes the inputted non-linear model from the 

flight simulation codes to program the state and control differential 

equation systems into the optimization algorithm 

• The Path Function:  Allows the user to program the desired constraints 

into the optimization algorithm in order to limit state variable outputs 

• The Events Function:  Defines and codes the initial and final condition 

limits for state variable values on which the user desires to enforce 

hard values. 

The next part of this project will describe how the algorithm inside of the 

optimization programs works to produce a solution from the aforementioned 

inputs. 

Overall, this thesis will attempt to obtain a unique optimal solution for, at a 

minimum, several examples of the following scenario for the X-Cell 60 small-

scale helicopter UAV: 

• Minimize flight time; no obstacles. 

In summary, we will find an optimal solution (minimum flight time) for J in  

0

( ( ), ( ), )
ft

J f x t u t t dt= ∫  
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where 

,int

( )

x

y

z

s

s

ped

p
p

p
u
v
w

x t

q
r
s
a
b

θ

δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ⎜ ⎟
⎜ ⎟=
⎜ ⎟

Ψ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

and 

( )

lat

lon

col

ped

u t

δ
δ
δ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
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governed by 

n B bP B V= ⋅  

n B bSΩ = ⋅Ω  

( ) gb
b b b

FFV V
m m

= −Ω × + +  

1[ ( )]b b b bI M I−Ω = − Ω × Ωi  

1 lons s s
s lon

Aa a aa r u w
u w

δδ δ δ
τ τ δ δ τ

⎛ ⎞= − − + + +⎜ ⎟
⎝ ⎠  

1 lats s
s lat

Bb bb q v
v

δδ δ
τ τ δ τ

= − − − +  

and 

,intped a pedK sδ δ= −  

where 

( , , )T
n x y zP p p p=  

 
( , , )T

bV u v w=  
 

( , , )T
n θΩ = Φ Ψ  

( , , )T
b q r sΩ = . 
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III. PSEUDOSPECTRAL METHOD FOR OPTIMAL CONTROL 

A. INTRODUCTION 

For quite some time, mathematicians have struggled with a reliable 

method for solving optimal control problems with complicated nonlinear dynamics 

and constraints.  Over the past decade, direct computational methods have 

become increasingly popular for solving these optimal control problems [7].  In 

direct methods, a continuous time problem is discretized over a set time interval, 

and the resulting discrete problem is solved numerically using nonlinear 

programming algorithms.  Due to significant progress in large-scale 

computational algorithms and nonlinear programming, direct Pseudospectral 

(PS) methods have emerged as reliable direct methods for optimal              

control [8, 9, 10].  For quite some time, PS methods have been widely applied for 

complex scientific computation models involving differential equations, and PS 

methods have proven themselves as very efficient in solving these problems.  

However, only recently have PS methods intersected with nonlinear optimal 

control [11, 12].  This project uses a PS algorithm to numerically solve the 

problem of optimal control for the purpose of optimal UAV trajectory planning.   

B. PROBLEM FORMULATION 

This section will articulate how the PS  method discretizes the problem of 

optimal control subjecting to nonlinear dynamics into a problem of finite 

dimensional nonlinear optimization, enabling the application of computational 

nonlinear programming to solve for the optimal control and optimal trajectories.  

Consider the following general optimal control problem: 

1

1

min[ ( ( ), ( ))] ( ( ), ( )) ( ( 1), (1))J x u F x t u t dt E x x
+

−

= + −∫i i  

subject to the following set of differential equations and initial conditions: 
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( , )x f x u= ;  ,n mx u∈ ∈  

 

( ( 1), (1)) 0e x x− = ; ( ( ), ( )) 0h x t u t ≤   

where x is the state variable and u is the control input [7]. 

( ( 1), (1))E x x−  

is the cost due to the endpoints, 

( ( 1), (1)) 0e x x− =  

is the condition at the endpoints, such as initial value, and 

( ( ), ( )) 0h x t u t ≤  

is the set of state and control variable constraints.  The PS method uses Sobolev 

spaces ,m pW , which involve functions ( )tξ , defined in [ 1, 1]− + , whose j-th order 

weak derivative, ( )jξ , lies in the space pL  for all 0 j m≤ ≤  with the norm [7] 

,
( )

0
m p p

m
j

W L
j

ξ ξ
=

=∑ . 

 As previously mentioned, the PS method is an efficient direct method; this 

means that the actual optimal control problem, not the associated necessary 

conditions, is discretized to obtain a non-linear programming problem.  Just as in 

any problem solved numerically, the accuracy of the PS method depends 

strongly on the method of approximation.  Given a function ( ) :[ , ]f t a b →R , one 

could conventionally approximate ( )f t  by interpolating over uniformly spaced 

time nodes where 0 1, ( ) / ,..., Nt a t b a N t b= = − = , and N is equal to the number of 

interpolation points (or time nodes in the algorithm).  However, it is widely known 

and proven that uniformly spaced points may produce numerical solutions with 

much higher approximation error, for the same number of points, than those 



 29

calculated using other more sophisticated interpolation methods [7].  

Furthermore, it is critical to emphasize that the number of interpolation points in 

calculating the solution to an optimal control problem is not only an issue of 

efficiency, but also of feasibility.  A higher number of interpolation points results 

in a higher dimension in the non-linear programming model.  If a particular model 

becomes too complex, it can easily overwhelm computational capabilities of an 

operating system; we obviously do not want this to happen and must carefully 

select an efficient interpolation method that can provide a low-error solution with 

relatively few nodes [7]. 

 The PS model used for this project involves interpolating with Legendre-

Gauss-Lobatto (LGL) quadrature nodes.  These nodes, denoted by 

{ }0 1 2 11 1n nt t t t t−= − < < < < < =… , are the roots of NL  where NL  is the Nth-order 

derivative of the Legendre Polynomial ( )NL t .  Using this method, the range of 

integration is transformed universally to [-1,+1], which is the interval for Legendre 

Polynomials.  Although the LGL interpolation points are not evenly spaced, they 

are symmetric about the midpoint 0 [7].  Figure 6 shows a range of LGL points for 

N = 16.                

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 LGL Points; N=16

 

Figure 6.   LGL Nodes, N = 16 
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PS methods are widely applied to numerically solve models using partial 

differential equations (PDEs).  However, optimal control problems have several 

fundamental differences from the computation of PDEs.  Solving optimal control 

problems asks for the collective and simultaneous solving of several different 

systems, including the differential equation governing the control system, the 

integration of the cost function, and the state-control constraints.  Then these 

approximations are integrated together to form a problem of discrete nonlinear 

optimization which must be solved numerically to find the approximate optimal 

control [7]. 

In a PS optimal control method, the state and control functions, x(t) and 

u(t), are approximated by Nth order Polynomials based on interpolation at 

selected LGL quadrature nodes.  In the discretization, the state variables are 

approximated by the vectors 

1

2

Nk

Nk
Nk

Nk
r

x
x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

which is an approximation of ( )kx t .  Also, the vector Nku  is the approximation of 

( )ku t .  Consequently, a discrete estimation of the function ( )ix t is the vector 

1 2, , ,N N N NN
i i i ix x x x⎡ ⎤= ⋅⋅⋅⎣ ⎦ . 

A continuous estimate can be defined by a polynomial interpolation ( )N
ix t  where 

0
( ) ( ) ( )

N
N Nk

i i i k
k

x t x t x t
=

≈ = Φ∑  

where ( )k tΦ  is the Lagrange interpolating polynomial [13].  In contrast, the 

control input is approximated by the non-polynomial interpolation  
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( ) ( ( ))( )
( ( ))

N N
N r

N

x t f x tu t
g x t
−

= . 

In the notations, the discrete variables are denoted by letters with an upper bar, 

such as Nk
ix  and Nku .  If k in the superscript and/or i in the subscript are missing, 

then the notation represents a vector or matrix in which those particular indices 

run from their minimum to maximum values [7].  For example,  

1 2, , ,N N N NN
i i i ix x x x⎡ ⎤= ⋅⋅⋅⎣ ⎦  

1

2

Nk

Nk
Nk

Nk
r

x
x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

0 1
1 1 1

0 1
2 2 2

0 1

N N NN

N N NN
N

N N NN
r r r

x x x
x x x

x

x x x

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

1 2, , ,N N N NNu u u u⎡ ⎤= ⋅⋅⋅⎣ ⎦  

where 

{ }0,1,2,...,k N=  is the interpolation point (node) number 

{ }1,2,...,i r= is the state variable number 

N = the total number of interpolation points (nodes) 

r = the total number of state variables 

 and k, i, N, and r are the subscript and superscript definitions [7].    
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 The analysis of spectral methods demonstrates that PS method is simple, 

accurate, and relatively fast in the estimation of smooth functions, integrations, 

and differentiations.  These are all critical pieces for solving optimal control 

problems.  The derivative of ( )N
ix t  at the LGL node kt  is easily computed by 

using matrix multiplication: 

0 1 2( ) ( ) ( ) ( ) ( )
TN N N N N T

i i i i N ix t x t x t x t D x⎡ ⎤ =⎣ ⎦  

where the ( 1) ( 1)N N+ × +  differentiation matrix D is defined by 

( ) 1 ,
( )

( 1) , 0
4

( 1) ,
4
0,

N i

N k i k

ik

L t if i k
L t t t

N N if i kD

N N if i k N

otherwise

⎧⎛ ⎞⎛ ⎞
≠⎪⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎪

⎪ +⎪ − = ==⎨
⎪ +⎪ = =
⎪
⎪⎩

. 

The cost functional [ ]( ) , ( )J x u⋅ ⋅  is approximated by the Gauss-Lobatto integration 

rule, 

[ ] ( )( ) , ( ) ,N N NJ x u J x u⋅ ⋅ ≈   ( ) ( )0

0

, ,
N

Nk Nk N NN
k

k

F x u w E x x
=

= +∑  

where kw  are the LGL quadrature weights defined by  

( )2
1 2

( 1)( )k
N k

w
N NL t

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. 

The approximation is so accurate that it has no error if the integrand function is a 

polynomial of a degree less than 2N [7].   
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 In order to demonstrate the PS discretization, consider the following 

general nonlinear optimization problem:   

Find Nk rx ∈  and Nku ∈ , { }0,1, ,k N= … , that minimize 

0

0
( , ) ( , ) ( , )

N
N N N Nk Nk N NN

k
k

J x u F x u w E x x
=

= +∑  

subject to 

0

( , )
N

Ni Nk Nk
ki

i

D x f x u δ
= ∞

− ≤∑  

0( , )N NNe x x δ
∞
≤  

( , )Nk Nkh x u δ≤  

where δ  is a small positive number as the relaxation of the constraints. Such 

relaxation is necessary as shown in [14]. It guarantees the feasibility of the 

problem. 

0

( , )
N

Ni Nk Nk
ki

i

D x f x u δ
= ∞

− ≤∑  

represents the discretization of the control system defined by the differential 

equation.  Constraints are imposed and then tightened, as necessary, to define a 

search region within which nonlinear programming software packages can 

produce a feasible optimal control solution [7].  In [7], it is proven for feedback 

linearizable systems—a family of widely used control systems—that the value of 

the optimal cost of the discretized nonlinear optimization converges to the 

optimal cost of the original problem of optimal control. It is also proven that the 

method has a high order rate of convergence depending on the smoothness of 

the original problem. This result implies that the PS methods are convergent and 

numerically efficient. 
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In conclusion, this chapter has shown how PS optimal control methods 

allow a problem of optimal control subject to complex nonlinear dynamical and 

algebraic constraints to be discretized and solved numerically.  The discretization 

works in a harmonic way for the multiple components in the problem, the cost 

function, the nonlinear control system, and the algebraic constraints.  The 

efficient transition from continuous to discrete is crucial in the solution of the UAV 

optimal trajectory problem.  Also, further analysis of References 7, 14 and 15 

show that calculating optimal cost solutions using PS methods has a very high 

rate of convergence when compared to other methods; in fact, the Legendre PS 

method will have a faster convergence rate than any polynomial method [7, 14, 

15].    
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IV. SIMULATIONS 

A. INTRODUCTION 

The objective for this thesis is to computationally find optimal trajectories 

and controls and obtain a unique solution for, at a minimum, the scenario 

discussed at the end of Chapter II:  minimize flight time with no obstacles. 

Before simulating this scenario, it is necessary to mesh two existing codes 

from two separate entities in order to use an optimizing algorithm in conjunction 

with the non-linear model of the X-Cell 60 Helicopter UAV.  Prior to meshing 

these codes together, it is critical to ensure that they both function separately.  

Consequently, flight simulations are conducted using the non-linear helicopter 

and flight simulation codes provided by the team from the National University of 

Singapore, and a simple example scenario is optimized using an algorithm 

developed at the Naval Postgraduate School.  Once the codes operate 

separately, the non-linear helicopter model is imported into the optimizing 

program to provide a single code that will optimize the trajectory for our selected 

Helicopter UAV model.  

B. FLIGHT SIMULATION 

The codes used from the National University of Singapore contain two key 

files:  1) The nonlinear helicopter model and 2) The flight simulation code (which 

takes the non-linear model and inputs it into a fourth order Runge-Kutta Method 

loop to fly over a set number of time steps).  Initially, the code designers set the 

control variables latδ ,  lonδ , and colδ  as fixed values throughout all time steps and 

the pedδ  control variable to change linearly with respect to the Intermediate State 

in Yaw Rate Gyro Dynamics state variable.  These control variable settings 

ensured flight stability and are set in a manner to fly the UAV on a relatively  
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straight path in the y direction (due East).  Figures 7 and 8 show the positions 

and velocities, respectively, in the x, y, and z directions over time with the 

parameter set by the code designers.       
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Figure 7.   Flight Simulation, positions (x,y,z) with respect to time 
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Figure 8.     Flight Simulation, velocities (u,v,w) with respect to time 
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As shown in Figures 7 and 8, the Flight Simulation code, using the non-

linear model, produces a stable flight for the Helicopter UAV; therefore, the non-

linear model should behave properly when integrated into the optimization 

algorithm. 

C. OPTIMIZATION EXAMPLE 

In order to gain a better understanding for the optimization program, it was 

essential to run an elementary example prior to solving such a complex system 

as our Helicopter UAV model.  The initial example is a simple system with two 

state variables and one control variable.  The example problem is 

x y
y y u
=⎧

⎨ = +⎩
 

where u is the control variable and the performance measure is  

1
2 2

0

min[ ] ( .005 )J x y u dt= + +∫  

subject to the constraint 

21 18
2 2

y t⎛ ⎞≤ − −⎜ ⎟
⎝ ⎠

 

and the initial conditions 

(0) 0
(0) 1

x
y

=⎧
⎨ =−⎩

 

where [0,1]t∈ . 

It turns out that the optimization algorithm provides an optimal solution to this 

problem.  This is determined by the Exit Codes; these codes are built into the 

program to show that a solution is optimal or to help refine possible reasons for 
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non-optimal solutions.  In this particular case, the Exit Code is 1—an optimal 

solution with all conditions satisfied [16].  Figure 9 depicts the control variable 

values throughout the time interval, and Figure 10 shows the x, y, and constraint 

values throughout the time interval.  It is clear from Figure 10 that the state 

variable values follow the constraint.  All of the outputs from the optimization 

algorithm determine that the value .1803J =  is a minimum value. 
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Figure 9.   Control Variable (u) values at (t) for the Optimization Example 

 

 



 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

Time (t)

V
al

ue
 a

t (
t)

Plot of x,y,and constraint values at time (t)

 

 

x(t)
y(t)
constraint value at (t)

 

Figure 10.   x, y, and constraint values at (t) for the Optimization Example 

D. OPTIMAL CONTROL OF THE HELICOPTER UAV 

Since both codes have separately provided successful results, it is time to 

mesh the codes and begin working through some examples using our non-linear 

Helicopter UAV model.  It is crucial for us to understand that simulations are 

testing the optimal control algorithm and the non-linear UAV model.  The UAV 

model has been verified for stability and simulation of smooth curve flight but not 

necessarily for use in optimal control.  Any simulation errors or inconsistencies 

could result from incompatibilities in either code. 

For all optimization simulations, 30 LGL time nodes are used.  This 

number of nodes seem to provide the best results throughout simulations.  The 

control variables, as given in the non-linear helicopter model, have non-

dimensional values and are bounded in the following manner: 
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[ 1,1]latδ ∈ −  

[ 1,1]lonδ ∈ −  

[ 1,0]colδ ∈ −  

[ 1,1]pedδ ∈ − . 

1. Minimize Time, No Obstacles 

For the time minimization performance measure, four simple examples are 

run:   

Example 1:  The UAV travels from the point (0, 0, -10) to the point (10, 0, -10) 

(the initial and final position values in the y and z directions, 

respectively, are the same)  

Example 2:  The UAV travels from the point (0, 0, -10) to the point (10, 10, -10) 

(the initial and final position values are the same in only the z 

directions)   

Example 3:  The UAV travels from the point (0, 0, -10) to the point (50, 0, -10) 

(same conditions in the y and z directions with the distance 

travelled in the x direction increased from 10 to 50 units) 

Example 4:  The UAV travels from the point (0, 0, -10) to the point (50, 50, -10) 

(the total distance travelled in both the x and y directions is 

increased from 10 to 50 units).   

 

All four examples have the same initial conditions for the state variables (all 

values are zero, except for zp , which is initially -10; this implies that the 

helicopter begins at a position 10 units above the ground).  Since the objective is 

to minimize time, the integral for the performance measure is simply 



 41

0

min[ ] 1
ft

J dt= ∫  

where the solution simplifies to ft . 

For Example 1, 12 of the state variables have fixed boundary conditions at 

ft ; they are annotated in the vector equation 
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. 

 

Since there are no obstacles impeding the trajectory, the expectation is 

that the solution should be a relatively straight flight path in the x-direction with a 

smooth acceleration for the first half of the flight followed by a smooth 

deceleration for the second half in order to return to a u and v value of 0 at ft .  

As shown in Figures 11 and 12, the actual solution provided by the algorithm 

adheres closely to our predictions. 
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Figure 11.   Positions over time for Example 1 
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Figure 12.   Velocities over time for Example 1 

 

The minimum time required is 

min[ ] 2.6905fJ t= = . 
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Figure 13 depicts the four control variable values throughout the flight time 

span.  In the control variable plots for all examples in this chapter, the following 

substitutions apply: 

1 latU δ=  

2 lonU δ=  

3 colU δ=  

4 pedU δ= . 
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Figure 13.   Control variable values over time for Example 1 

The solution value and the position plots in Figure 11 seem to hint that our 

solution is valid and quite possibly a true optimal solution to Example 1.  

However, the velocity and control variable plots show some unexpected 

inconsistencies that contradict the Exit Code from the program output (which 

suggests that the solution is truly optimal).  The Exit Code, 1, as defined in the 

algorithm’s user guide, tells us that the simulation has produced an optimal value 

for the performance measure [16].  Figure 12 shows an unexpected range in 

velocities in the z direction—there should be very little velocity in the y or z 
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direction to fly from 0 to 10 in only the x direction.  Also, Figure 13 demonstrates 

high levels of instability in the control variable values near 0t  and ft .  These 

observations from the simulation results lead us to believe that the trajectory 

does not obey the dynamical rules of the system. This issue will be discussed 

later in this section.   

For Example 2, 12 of the state variables have fixed boundary conditions at 

ft ; they are annotated in the vector equation 
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. 

Since, again, there are no obstacles involved, the expectation is that the 

solution should be a relatively straight flight path in the xy-direction with a smooth 

acceleration for the first half of the flight followed by a smooth deceleration for the 

second half in order to return to a u and v value of 0 at ft .  One would expect a 

similar position and velocity curve in the x and y directions.  Figures 14 and 15 

show that the actual solution provided by the algorithm adheres closely to our 

predictions. 
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Figure 14.   Positions over time for Example 2 
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Figure 15.   Velocities over time for Example 2 

The minimum time required is 

min[ ] 2.7255fJ t= = . 
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Figure 16 depicts the four control variable values throughout the flight time 

span.   
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Figure 16.   Control variable values over time for Example 2 

The solution value, the position plot in Figure 14, and the velocity plot in 

Figure 15 (in the x and y directions) all seem to hint that our solution is valid and 

quite possibly a true optimal solution to Example 2.  However, the velocity in the 

z direction and control variable plots show some unexpected inconsistencies that 

help to explain the Exit Code from the program output (which suggests that the 

solution is not optimal).  Example 2 had a different Exit Code output from 

Example 1 (Exit Code 41) which, according to the user’s guide, means that our 

solution is nearly optimal but encounters numerical difficulties when the sub-

optimal solution cannot be improved [16].  This is apparent from the simulation 

run times:  10 to 15 seconds for Exit Code 1 but 400 to 1300 seconds for Exit 

Code 41.  Similar to Example 1, Figure 15 shows an unexpected range in 

velocities in the z direction—there should be very little velocity in the z direction  
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to fly from 0 to 10 in the x and y directions—and Figure 16 demonstrates high 

levels of instability in the control variable values near 0t  and ft  which could 

directly influence the optimality of the solution.     

For Example 3, 12 of the state variables have fixed boundary conditions at 

ft ; they are annotated in the vector equation 
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. 

 

Similar to Example 1, the UAV should fly a relatively straight path in the x-

direction with a smooth acceleration for the first half of the flight followed by a 

smooth deceleration for the second half in order to return to a u and v value of 0 

at ft .  As shown in Figure 17, the actual solution provided by the algorithm 

adheres closely to our predictions.  However, Figure 18 shows unexpected 

changes in velocity in both the y and z directions.  
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Figure 17.   Positions over time for Example 3 
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Figure 18.   Velocities over time for Example 3 

Figures 17 and 18 clearly do not match up for their y and z components.  

Based on Figure 18, there should be substantial position changes in all three 

directions in Figure 17.  This is not the case; however, the simulation achieves an 

Exit Code 1 value that implies the following is an optimal solution [16]: 
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min[ ] 5.2311fJ t= = . 

However, the plot discrepancies suggest an issue with the non-linear UAV model 

portion of the code.  Figure 19 demonstrates similar endpoint instability for the 

control variable as were seen in Examples 1 and 2; however, the instability is not 

nearly as drastic as in the first two examples.   
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Figure 19.   Control variable values over time for Example 3 

For Example 4,12 of the state variables have fixed boundary conditions at 

ft ; they are annotated in the vector equation 
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. 

 

Since, again, there are no obstacles involved, the expectation is that the 

solution should be a relatively straight flight path in the xy-direction with a smooth 

acceleration for the first half of the flight followed by a smooth deceleration for the 

second half in order to return to a u and v value of 0 at ft .  Just as in Example 2, 

one would expect a similar position and velocity curve in the x and y directions.  

Figures 20 and 21 show that the actual solution provided by the algorithm 

adheres closely to our predictions. 
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Figure 20.   Positions over time for Example 4 
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Figure 21.   Velocities over time for Example 4 

The minimum time required is 

min[ ] 6.3853fJ t= = . 
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Figure 22 depicts the four control variable values throughout the flight time 

span. 
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Figure 22.   Control variable values over time for Example 4 

Just as in Example 2, the solution value, the position plot in Figure 20, and 

the velocity plot in Figure 21 (in the x direction) all seem to hint that our solution 

is valid and quite possibly a true optimal solution to Example 4.  However, the 

velocity in the y and z directions and control variable plots show some 

unexpected inconsistencies that help to explain the Exit Code of 41 from the 

program output (which, just as in Example 2, suggests that the solution is not 

optimal) [16].  The inconsistencies between the position and velocity plots are 

very similar to those in Example 3.  The control variable values in Figure 22 show 

that the endpoint instability is not nearly as drastic as in Examples 1 and 2 but 

similar to that shown in Example 3.  It seems that lengthening that path tends to 

smooth the control variable variation to some degree. 

 The previous four simple examples have demonstrated that the meshing 

of the nonlinear UAV model and the optimization algorithm codes is functional  
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and effectively simulates a three dimensional trajectory while outputting an 

optimal or near optimal solution for minimal flight time for several different sets of 

initial and final conditions.  However, there are several issues that must be 

worked out in the future.  The inconsistency between the path and velocity 

trajectories implies that discrepancies exist when the UAV model is integrated 

with the optimal control software package.  It is a known fact that computational 

optimal control requires higher accuracy than what is needed in the integration of 

ODEs.  As recently as two weeks ago, the UAV Laboratory of the National 

University of Singapore developed a new model of the same UAV system. 

According to their analysis and simulations, the accuracy, when comparing to 

experimentation data, is much higher then the old model that is being used in our 

program.  We are advised to use the new model in all simulations. The next step 

of research is to integrate the new model into the package developed in this 

thesis to achieve improved simulation results. In addition, various numbers of 

nodes and scenarios are to be numerically tested and analyzed.  
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V. CONCLUSIONS AND FUTURE RESEARCH 

A. CONCLUSIONS 

This thesis project has been a very interesting look into the value of 

numerical methods for solving complex problems.  There are several findings, 

some positive and some negative, that have impacted the results and, 

consequently, have set the ground work for a plethora of future research. 

First, and foremost, the meshing of two models from two different software 

packages into one set of optimization codes was effective and produced optimal 

results for several simple examples.  The organization of the optimization codes 

into five separate user input file—one for the performance measure, one to 

manage the system of dynamic and control equations, one to manage the 

constraints, one to manage the initial and final conditions of the equation system, 

and one main code to run the algorithm—proved very useful in segregating and 

resolving errors during the early coding phases.  Also, this organization of the 

codes made it quite simple to set up new examples for analysis.   

Interestingly, the optimization code is very sensitive to bounds placed on 

the variables.  It was an obvious assumption that bounds too restrictive in nature 

would make the problem infeasible. As a result, the program cannot calculate an 

optimal solution.  However, if the range between the upper and lower bound is 

too large, it may take a long time for the program to converge.  In worse cases, 

the program may diverge.  This sensitivity forces the user to carefully select the 

bounds and continue refining them, in some cases, to allow the program to run 

successfully. 

Since some examples resulted in an optimal solution and some did not, it 

seems logical that there are some issues with both models that need to be 

worked out in order to make the optimization algorithm and nonlinear model 

operate in harmony.  Since the non-linear model is not originally designed for 
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optimization, this is a sensible conclusion.  Some of the constant values that 

create an ideal environment for flight simulation may not necessarily do so for 

optimization of a flight trajectory.  The fact that it works in certain cases is a sign 

that the nonlinear model should not have to be altered much to operate much 

more effectively within the optimization algorithm for additional simulations. 

Another disparity that hints toward non-conformity within the nonlinear 

UAV model is the issue of disagreement between one or more of the velocity 

components over time as compared to their respective position components.  

The fact that, in some cases, the optimization algorithm outputs an Exit Code 1 

(an optimal solution output) while the plots do not make sense, hints that there is 

a discrepancy when the UAV model is integrated with the optimal control 

program.  These inconsistencies must be adjusted before one can simulate and 

optimize more complex trajectories. 

The final finding, which would make the examples in this thesis very 

difficult to transition to real-life flight simulations, is the erratic nature of the 

control variable values, especially near the initial and final time steps.  It seems 

that the actual helicopter UAV would fly in a very unstable fashion with the 

plotted control variable inputs.  Smoothing these input values would make the 

model a more realistic feat for actual test flight trajectory analysis.      

Overall, this project was an interesting and enjoyable research experience 

where I was able to learn a great deal about a subject of which I previously knew 

almost nothing about.  The meshing of two codes into one functional optimization 

algorithm with the ability to simulate an extremely complex flight trajectory and 

output an optimal solution was a great success, and I look forward to pursuing 

future endeavors on this project with my advisor. 
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B. FUTURE RESEARCH 

There is a tremendous amount work that can be done to further the 

research in this thesis, and I plan on pursuing some of this work with Dr. Kang in 

the future.  Some future endeavors include the following: 

• Working with the recently improved UAV model to get it to conform 

better to the optimization algorithm 

• Applying the optimization algorithm with this particular helicopter 

UAV to more complex flight trajectories such as collision avoidance 

in obstacle dense environment 

• Optimizing other performance measures 

• Applying the same optimization algorithm to other UAV types and 

actual helicopters. 

The modeling of these scenarios could prove invaluable to the United States 

Military’s ability to maximize the effectiveness of limited UAV resources in 

combat zones and could eventually model trajectories minimizing the risk to 

pilots and aircraft for helicopters of different size and purpose. 

 Improving both the UAV model and the optimization algorithm will enable 

the program to calculate solutions for more complex trajectory simulations.  For 

example, a user could add obstacles to the UAV’s path, which, up to this point, 

we have not been able to code effectively.  Also, one could track a path 

(potentially a hostile person or vehicle on the ground) with minimum variance 

from that path.  This model would be incredibly useful in urban environments.  In 

addition to minimizing, a user could opt to try to maximize a UAV’s capability, 

such as the number targets or amount of ground area observed within a given 

flight time window.  In the examples for this thesis, we minimized the flight time, 

but additional parameters could be added to the model to minimize fuel 

consumption or flight cost.  These are just a few examples of more complex 

trajectories with alternate performance measures for realistic UAV operations. 
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 Trajectory optimization for helicopter UAVs definitely has real-world 

applications, which means many more ways to continue building on this project.  

Hopefully, these applications will provide the military with plausible options for 

maximizing effectiveness and minimizing risk and cost on the future battlefield.  
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